1 April 2018

Went for a couple test drives to get more comfortable with the new transmission and the close ratios. Something else though, came to light during the drives that consumed my attention.

Ever since the engine was retuned I noticed that coolant temperature seemed a little higher. It wasn’t a lot though and since coolant temperature is affected somewhat by outside air temperature,  it was never really clear if it really was or not.

As mentioned before, Midlana has always had this somewhat odd trait where when idling with the fan on, coolant temperature is fine (mid-80s, C of course), and when on-track and driving hard, coolant temperature is about the same. But then there’s just plodding along on the freeway at 65-75 mph. One would think in that low-power situation, coolant temperature should again be about the same, only it isn’t. Given enough time, the temperature very slowly creeps its way up to around 90C, and this weekend on the freeway while going up a long incline, it hit a new record of 93C. If it was the middle of summer it wouldn’t have been as big a deal, but outside air temperature was only 17C.

There’s about a dozen things that could be going on, and in no particular order: radiator too small, weak electric water pump (or plumbed backwards(!), mechanical water pump turning the wrong way(!), defective coolant temperature sensor, air going around the radiator, big air bubble in the cooling system somewhere, engine timing, a collapsing hose or obstruction, low coolant, or maybe something I’m missing.

First, a back story regarding pumps, which involves Kimini, predecessor to Midlana. Kimini’s new owner added an electric water pump to help move coolant from the mid-mounted engine to the radiator and back. It apparently worked well enough that he stopped paying attention to coolant temperature, because soon after, the engine was destroyed due to severe overheating. Turns out that he’d  wired/plumbed the pump so it was moving coolant the opposite direction as the engine’s mechanical pump! This caused very interesting symptoms – had he noticed. At idle, the electric pump probably won the tug of war regarding flow direction, so it stayed cool. At freeways speed, the mechanical pump, now spinning fastest, probably won the fight, moving coolant the opposite direction. But consider the case of driving at some magic lower speed where the flow generated by the mechanical and electric water pump perfectly balances. At that  speed, coolant flow through the engine is zero – end of story, and end of engine.

As a sanity check, both pumps were checked for proper rotation; the mechanical pump because I’d rerouted the belt, and the electric pump, just because. Both were fine, so they’re off the list.

To keep from wastefully replacing stuff, the car was warmed up to an indicated 80C, then the radiator cap on the header tank removed and the temperature measured with an accurate mercury thermometer, which read about 68C. At first it seemed like “ah hah”, but probably not because the header tank is filled by two bleeder hoses, a small one from the cylinder head, and a larger one from the top of the radiator. It’s likely that the header tank will always be somewhat cooler than the coolant measured by the sensor itself inside the cylinder head. That said, I’m going to buy a new coolant sender anyway, plug it into the harness outside the cylinder head, and put it and the thermometer in a heated container of water. The reason is because an inaccurate calibration of one of the ECU manufacturer’s default Honda sensors has already been identified. I’ve never tested the coolant sensor so this would be a good reality check.

Another reason the header temperature might be inaccurate is because coolant flowing from the engine to the radiator flows first through an oil-to-coolant heat exchanger, which can add or subtract heat depending upon oil temperature.

Because of the bleed lines, I don’t believe it’s possible for a big air bubble to be trapped in the cooling system; it’s self-purging by design so that’s off the list. The radiator being too small doesn’t fit either, since it works fine under hard use at the track. Coolant level is fine; I don’t think (without proof) that there’s any obstructions because I only use distilled water and Water-Wetter. That leaves air going around the radiator… hmm.

As a quick test, rags were stuffed around the radiator where I could reach and another test drive performed. Well huh – taking the very same route, at the same speeds, and in the same weather, coolant temperature struggled to reach 90C, and when I let off, it dropped faster than before. This leads to the theory that at idle with the fan on, air gets sucked through the radiator by the fan, so the gaps around the sides don’t matter. At speed on-track, there’s so much air coming in that even with the leaks, there’s sufficient air flowing through the core that cooling is sufficient. That leaves the freeway situation. Here, there’s less air coming in the nose and maybe half (a big guess) is going around rather that through the radiator and providing insufficient cooling. It’s just a theory but seems to fit the facts. So first thing was to cut off the support for the horn (it sticks around the side of the radiator and makes sealing it in that area impossible). The horn will be relocated behind the radiator. Paper templates are being made for aluminum panels to extend from the inside of the nose cone to the forward face of the radiator, with foam between the two. This is so when lifting the front cover, the panels sealing the radiator will move away from it without snagging on anything.

So things look promising, though it’s something I should have done back when the car was built. Of course back then there was a big push to get it on the road, so some things got pushed off.

Oh, and there’s one other variable – ignition timing. From my understanding, timing really affects how much heat gets pushed into the cooling system. The tuner noted that he advanced timing quite a bit, so it may well be that that’s the source of the higher coolant temperatures.

Lastly, I’ve been trying to find what the normal coolant operating temperature is for a Honda K24, something that’s surprisingly vague and variable. It seems to be somewhere between 80-95C, so it’s not like the engine is overheating. This motivation to get to the bottom of this came from seeing temperatures it had never reached before, so adding the radiator ducting is the right thing to do, regardless.