8 August 2019

And life moves on.

The old lathe moved to its new home yesterday; I hope it serves the new owner as well as it has for me. What offset the slight sadness at seeing it go is getting a superior replacement for free (the buying and selling prices being essentially the same). Of course, the budget got blown anyway by upgrading both the chuck and tool post, as both were beat. Thus I learned the lesson about paying for a machine tool with coveted “extras” we’re told to always get, only to then pay a second time to replace them. The chuck will go to a buddy who wants to try to convert it to a rotary table, and the tool post was given away with the old lathe. I feel very fortunate to be able to own a well-made lathe and realize that if it’s treated well, it’ll likely outlive me, hmm.

So now what. With the mill and lathe issues dealt with, attention must turn toward ensuring that Midlana is ready for the hillclimb, which is creeping up on us six weeks from now.

28 July 2019

As posted earlier, the second throttle return spring didn’t cure the fast idle. Turns out that it may have simply been that the throttle body end of the cable was misadjusted too short. When cold, opening the throttle plate (at the throttle body) always resulted in a reassuring snap as it was released, closing completely. When warm, however, it was more of a soft “thump”, and the cable appeared to be keeping it from closing completely. Because of the hot weather, it’s unpleasant driving any open-top car, so it’ll probably be tested in the garage.

Regarding the lathe, cleaning up the new (though older) one took maybe 20 hours—it was a mess. Once done, four nice but expensive leveling caster wheels were placed under the 2500-lb lump, in addition to two traditional leveling screws. At first I wasn’t going to bother, but the thought of having to move that much weight ever again, even once, made it an easier decision. Also, it raises the lathe 4″, putting it at a better working level. Speaking of moving it, a neat tool for moving anything really heavy is an indexable pry bar, sort of a big crowbar with an adjustable foot. Between that, wood blocks, steel bars, and the castor wheels, the two lathes swapped positions.

Since it’s 3-phase, a variable frequency drive was connected and briefly run to prove it works, but playing with the new one was pushed off until the old lathe could be cleaned up and put up for sale. I’ve been watching Craigslist long enough to know what I was in for, and expected odd/irritating/lazy/wishy-washy/scammy people, and I was not disappointed. Not 30 minutes after the ad was posted, I received this from someone who hadn’t even seen it:

I will be  buying this from you, so please kindly withdraw the advert from site. My husband will overnight the payment asap but he will be paying with a Certified Check from his Bank and it will  deliver to you via FEDEX, so  I’ll need you to provide me with the following information to facilitate the mailing of the check… And am offering additional $70 with the original price to have this asap.

Name to be on the payment………..
Address to mail the check to………….
City, state and zip code ………….
Final Asking price……………….
Cell phone # to text you on …………….

I will make arrangements for the pick up as soon as you have your check clear, due to my work frame and my Kids,  I will not be able to come with the cash and pick it up so my husband will mail the check and have someone pick up the item after the check clear.,   Reference to your  post  am completely satisfied with it  and the payment will  be deliver within 48hours..God Bless
The way the scam works is that since it’s a certified check, a bank will instantly clear it, the buyer picks up the lathe and vanishes, and about a week later, the bank calls up and says, “yeah, about that check, it’s no good.” Hard not to wish something bad upon such slimy “godly” people. I’m surprised that banks don’t have an immediate way to check such things, but oh well. Another tidbit to the scam is the “offer” to send the check via FedEx. That’s to avoid mailing it through the U.S. postal system, where mail fraud has much harsher punishment.
 
The new lathe is being upgraded to a “multifix” tool post. Granted it’s from China (it’s not manufactured by anyone in the U.S, and is actually a Swiss design). The machinist forums speak very highly of it, so a set was ordered. Upon arrival, I was puzzled by a big tool holder in the box that I hadn’t ordered. It must have weighed at least 5-lbs on its own. Curious, I contacted the seller and they said that shipping is actually cheaper for them if they weigh it down so it gets bumped to the next weight tier. Okay…
 
Lastly, it looks like the chuck may have to be upgraded as well. While it’s a desirable part (a 9″ Buck ‘tru-set’ chuck”, but is completely worn out). Worse, someone ran a drill through the jaws, removing all the teeth, and the jaws are hard or impossible to replace, and these appeared slightly tapered. It’s not terrible, since it was somewhat expected that it might need upgrading. Besides, as a machinist once told me, “you should buy the best quality chuck you can, then put a lathe under it.”

15 July 2019

Hope you like to read…

I have the parts needed to rebuild the Grizzly 13 x 36 lathe, but couldn’t move it because my brother was using the engine hoist. The idea was to rebuild it, making a custom stand with a set of real drawers. The thing is, after all the work and expense, it wouldn’t be worth what I’d put into it, so I was hesitating.  At the same time, I was on a metalworking forum thread that had a thread about a really cool yet somewhat-obscure lathe, designed by Takisawa, built in Taiwan, and imported by Webb and others. Turns out that a forum member who owns one lives locally, so I went over to check it out. It’s a 2500-lb beast—a “real” lathe—and while the same size as the Grizzly, is twice as heavy and much more heavy duty due to having a one-piece casting that includes the legs. Most importantly to me, the owner said that out of the dozen or so lathe brands he’s owned over the years, he’s keeping this one—that statement carried a lot of weight with me.

The tipping point came when he later forwarded me an ad for one, and not only was it very local*, but also very affordable. To make a long story short, I bought it, a Webb/Takisawa TSL-800 14 x 30 lathe, manufactured in 1978. The downside is that it only came with a chuck and a so-so quality quick-change tool post. Lacking were many of the usual accessories such as a four-jaw chuck, tool holders, collet closer, collets, taper attachment, steady rest, and follow rest. The most bothersome thing, however, was it not having any change gears, necessary for cutting threads. These came as a set with the lathes, always included, but weren’t there, and is unfortunately a common story. I think it’s due to the lathe being one big casting; the 2-speed 5 hp motor consumes the inside of the left leg, and oddly, the right leg is empty, but with no door or shelf. Because of this, nothing can be stored in the lathe, so owners are left to store everything elsewhere, where it’s eventually forgotten about and often thrown out. The seller had purchased the lathe new, so they should have them. The catch is that they’ve moved twice before, which may spell doom for the gears. The shop is in the process of moving a third time, and as the lathe was being loaded onto the truck, I asked about the gears one last time, this time to an older employee. He said that he remembers seeing them in a wooden box, years ago, and would keep an eye out for them during the move. We’ll see.

The lathe was fully assessed once it got home. It’s amazingly dirty, and while it was expected to see dried oil and dirt in the usual areas, this one’s more evenly dirty everywhere. It’s almost like it had been somewhere with an aerosol form of oil/adhesive/paint floating around. If it was just oil, I’d expect WD40 on a rag to remove it. Whatever this stuff is, it’s really on there, and so far I’ve used up 1.5 gallons of acetone, the only thing that can remove it. The original paint color is battleship gray, which I kind of like. Under that is body filler over a bright orange primer coat. There’s a story here, as well: owners of this model theorize that the factory got a bad batch of body filler that never cured (or maybe they never added catalyst?), and worse, over time it loses adhesion with the underlying primer coat. As a result, both the filler and gray paint come off in patches, leaving bright orange areas. Before I started cleaning, I was planning to tear it down for paint. As cleaning progresses though, the embattled look is kind of growing on me (think of it as a “rat lathe”). The decision to leave it as-is is strengthened by an owner who tore his down for paint, saying later that dealing with the Bondo dust and paint made him wish that he had never started. And then there’s the sump…

Being a real lathe means that it has a coolant sump and pump setup. The central area where chips collect has a grate and screen at the bottom to allow coolant through into the sump. The grate and screen had long since clogged up and been covered by chips. The seller said they hadn’t used coolant in years, so it seemed like a non-issue. Yes, well… I took the screen off and what I saw and smelled defines description. Actually, I can, I just hope you aren’t eating: imagine being told to clean out a portable toilet with just gloves and paper towels. Yup, kinda like that. Moving on, once that’s done, since coolant won’t be used, the pump is coming off and a blanking plate sealed in place of the drain screen. In addition, the entire electrical system is being removed in anticipation of running exclusively on a Variable Frequency Drive. The one that’s on the way has a power switch, direction switch, and speed control built-in, so it’s pretty much plug-and-play.

Somewhat related, the brake pedal doesn’t work other than turning off the motor, which then coasts. With a large chuck spinning at high speed, stopping takes a long time—now I know why. I thought that the brake lining had just worn out, and perhaps it had, because the shop had removed it completely. That actually worked in my favor since it helped negotiate a lower price. The brake pedal switch will be wired into the VFD to activate electronic braking, which allows retaining the physical pedal as functional.

Other issues included an oddly-cocked gear lever on the quick-change gear box. I couldn’t understand why the lever wasn’t aligned with the labeled panel positions, yet seemed to work, so I wanted to remove the cover to see what was going on. Removing the cover, however, meant removing the levers first. One came off fine, but the split pin in the other would budge. I eventually figured out that someone or something had forced the lever and doing so had partially sheared the split pin, misaligning the holes and making it impossible to remove. That answered the alignment question, so the only answer seemed to be to force it further until the pin sheared completely, while hoping that it could still be slid off the shaft, which it thankfully could be.

There are also several damaged/destroyed ball oilers. Hopefully they aren’t too hard to find replacements for, just have to measure the bore and assume that they’re metric (update: they seem to be imperial size…). I saw a suggestion somewhere to drill them oversize so fractional inch units could be swapped in. That’s all fine if the lathe is completely torn down, but if it not, it gets chips into all the worst places.

It may sound like a lot of issues, but I enjoy the journey. Nothing serious has been found, all the gears and bearings look and feel great, and all the issues have so far either been resolved or at least figured out.

A couple other tidbits: In today’s dollars, this would have sold for approximately $16,000, which is believable. I’m considering whether to make a wheeled stand for it. Due to its weight, moving it is a really big deal, and being able to retract the feet and push it around is tempting. Lastly, since Grizzly is mentioned up top, here’s an upbeat video about the history of the company and its founder: https://youtu.be/eBQk1WmXpm4. It’s neat to see that with hard work, and even when starting out with no money, it’s still possible to become a success.

* If you are considering a lathe, mill, or some other heavy piece of equipment, be sure to factor in moving it. The first place I called quoted $700-1000 to move it three miles. The second place charged $280, so the amount can be a big part of any “deal” you find. The alternative is to rent a heavy equipment trailer. It’s specially built for the job, heavy duty, and the trailer bed drops straight down to ground level instead of tipping. Because I didn’t have the time, or a way to move it onto the trailer, I elected to pay to have it moved, but next time, I’d consider moving it myself.

7 July 2019

Shaken, not stirred.

The first earthquake happened while we were on the freeway, and didn’t notice anything (and I don’t think anyone else did, either, since we’re about 180 miles from the epicenter). The second one, though, was much stronger, hitting while we were at home. I was watching TV and gradually got an odd sensation, where if your heart rate is just right, it can resonate with your height, and gradually start you rocking back and forth slightly. I thought it was that at first, but it kept increasing in intensity, and eventually saw the lights starting to move. It lasted for quite a while, maybe 20-25 seconds, then faded out as slowly as it started. That’s the thing about earthquakes; when you feel one start, you never know if it’s going to be The One, or if it’ll stay docile and bow out gracefully.

My brother just got his replacement engine running; you may remember that his belt tensioner locked up, shredding the alternator belt, which then ate the dry sump pump belt, resulting in zero oil pressure, and the engine was done. The new engine has a more aggressive cam in it, and he’s rather pleased with himself about the lopping idle. Having the engine running now gives time to ensure it’s solid before we head to the hill climb.

Speaking of having a solid car, I drove Midlana about 70 miles, in part to test whether adding the second throttle return spring fixed the hanging idle… nope. The engine will be warmed up so that it’s repeatable (only happens hot), then confirm whether it really is a sticky throttle plate, or the intake control valve. If it’s the latter, I’ll spray some carburetor cleaner into the idle control valve port as a quick fix to see if it really is that. If it is, it’s surprising that it’s happening so soon after a full cleaning. Of course, it could also be the idle control software loop, though that seems unlikely since it worked fine before and the tune hasn’t changed. If that doesn’t smoothly resolve itself, it’ll be time to figure it out via the ECU log files.

Lastly, some mischief has been afoot on the shop side of things, because something irresistible was found and will be here next week.

30 June 2019

I don’t get excited too often, but we have not one, but two, Midlana builder announcements:

Builder “Freakynami”, in Australia, recently completed his frame and it’s now sitting on its wheels. He’s preparing to do his own torsional testing, required by the government to prove its torsional rigidity. He will be posting his results on the Midlana builder’s forum soon. I never measured it myself (though it was calculated in CAD) so his results will be very enlightening.

Meanwhile, builder “Matt” is creating his own aluminum body—I’m extremely impressed. This is the sort of innovation that I was hoping to see, builders taking the plans and running with them and creating their own truly unique cars, and they most certainly are! Well done, gentlemen!

22 June 2019

I periodically search the Web to see where Midlana is mentioned and ran across a reference on an Australian sports car site. The introduction noted:

If you’re not up to welding your own tube-framed Midlana or Locost/Lotus 7, your mates Down Under have the solution with the Spartan.

It would have been nice if they’d provided a link to Midlana, but didn’t even give a link to the car they were writing about! Anyway, comparing that car to Midlana isn’t exactly an even comparison given that:

Just 300 will be built so it’s best not to dawdle. The car is priced at $150,000 (Aus) and can be shipped worldwide.

That’s $104K US dollars, then add shipping from Australia, plus more if you want a sequential gearbox, and paint, and not being street legal. I guess I should be flattered by the comparison!

16 June 2019

My brother’s using the hoist to install his new engine, so it’s not available right now to help with rebuilding my lathe. The consequence is that I keep checking Craigslist “just in case” there’s some terrific deal out there  so that rebuilding the lathe can be avoided. This is due to seeing posts from people saying that rebuilding this lathe isn’t entirely straightforward. The concern is breaking something that’s long been unavailable, effectively reducing it to scrap.

That’s part of the rational for looking around before tearing it apart, in case something irresistible shows up that allows upgrading for little or even no money.

Unfortunately,  a surprising number of CL ads show some annoying human personality traits; one is an almost criminal level of laziness, showing a single blurry picture of a dirty lathe, no brand name, no description, model number, age, or if anything comes with it. Contacting the seller only results in terse responses to what’s being asked. Really? They don’t seem to understand that you have to make it as easy as possible for people to give you money, but when you have to pull teeth, it kind of ruins the chances of that.

Another is pricing; an 8-yr old dented mid-range model Grizzly lathe showed up at $4000–a brand new one lists at $4500. I can’t tell if the owner is trying to snag ignorant buyers (even though price checking is a smart-phone click away), or if they really do think that time and wear have no effect on its worth. I sent the seller an email, saying that something that old is typically worth about half of new, which is what I offered if it doesn’t sell. The reply was that if it doesn’t get at least $3250, he’ll keep it. Yes he will.

I think the right thing to do is to go ahead and rebuild my lathe. That way, if it’s kept, it’ll be good enough for my needs, and if it’s sold, it’ll sell more easily. Or end up a scrap.

In Midlana news, the additional throttle return spring and graphite cable lubrication helped the sticking idle by about half. I really don’t want to pull out the old cable (still) so may try a stronger return spring.

In related news, the Nevada hillclimb is still on, aided by a recent development. On the same weekend as the event, nearly all hotel rooms had been sold out due to a wedding. Suddenly, all the rooms became available again, which is great for us–and probably the couple deciding to not get married…

6 June 2019

Finally got round to swapping out all the fluorescent lighting for LED. It’s definitely brighter and draws about half the power. There’s that, and no more loud humming or being grumpy about starting up in a cold garage; I don’t think anyone’s going to miss them.

There was some actual Midlana work, specifically, adding a second throttle return spring. There were a couple threaded holes already present on the intake manifold, so they were borrowed to mount a new bracket to. Haven’t driven it yet to see if it works, but it leaves open the option of adding stronger or longer springs later on.

Last picture, I may not have mentioned my growing interest in wooden gear clocks, but as shown, that’s yet another distraction. I already found out the hard way that our laser printer apparently distorts the “1:1” paper patterns that I’ve been gluing to the plywood, which became apparent after utilizing the mill’s DRO ability to place holes on a radius – they don’t quite match up with the pattern. That’s taken a bit of steam out of the project, with the concern being that the gears may not mesh smoothly. Anyway, there’s a lot more bits to cut out, so time will tell… so to speak.

1 June 2019

First, the excuses:

We got so much rain this year (spread over months) that there’s tons of weeds to pull, gophers and snails to kill, plants to trim, and getting the koi pond system ready for summer. Knock down any of the first four and they come right back due to the continued moisture. Then there’s building a garden shed to help with “yard organization”, in quotes because I admit to some nefarious scheming: getting more stuff out of the garage. Of course, what goes in there has to be balanced against the expected high heat in summer, and the possibility that it’s broken into. The garden shed is 3/4 done, but stalled due to getting soaked by a constant drizzle, hence me typing this up, but it frees up time to figure out the throttle spring.

Ah yes, the sticking throttle cable. Reading about such cables on bicycle sites, it seems that good cables shouldn’t be lubricated because it tends to accelerate wear due to attracting dirt. The alternative, and a good idea in general, is a second throttle return spring. The trick is making it work with the existing helical spring, either by adding a second one if there’s room, or adding a more traditional spring off an existing or new hard point.

I know I have a bad habit of talking about car stuff and then not doing it (like, oh, the engine cover, air filter housing, and the open area behind the muffler, and throttle spring, but I digress.) In that tradition, I’ve been thinking for a while now about doing a YouTube video series on Midlana. The episodes would cover various aspects of the design and serve as an overview/introduction for people thinking of building one. It has moved beyond just the thinking stage, having acquired a good lens for the camera, a mic, and decent lighting.

What’s spurred this on in-part are the videos made by This Old Tony. They’re very well done, well choreographed, well lit, with a good dose of humor, and they’re very informative; that’s the high bar I aspire to. What’s also helps is that you almost never see his face… this appeals to me!

Least you think I’m finally getting back to Midlana, another project is rebuilding my lathe. I bought a used Grizzly DF-1237G in the late 1990’s (it was apparently manufactured in the early 1990’s). From day one it’s leaked oil like a sieve, and while annoying, it still managed to help build Kimini and Midlana. While the draw is strong to buy a new lathe, I can’t in good conscience justify the expense when this one works fine, other than the leaks. I found a machinist’s forum where a few others have this same model (and all complaining about oil leaks). Grizzly still has some spare parts but  were out of oil seals (no doubt due to the systemic leaks). Like bearings, oil seals are a universal part, so now on-hand are new oil seals, as many bearings as I could get, stickers, and new belts. Oh, and I want to paint it; some people like the Grizzly green, but I prefer “machine gray.” I’m probably not going to strip it down completely (want to stay clear of the threading gearbox) so hopefully painting it doesn’t become a fiasco.

14 April 2019

Drove Midlana for the first time in a long while – no issues with the alternator bracket. The drive reminded me about something that had been going on for awhile, and still is; when letting off the gas, engine speed hangs at about 1500-1600 rpm for 2-5 seconds before dropping to idle. I earlier thought that the idle control valve was suspect, but also mentioned that it has very low hours on it since being cleaned. Turns out that the throttle cable appears to be sticking a bit. Pushing the throttle to above idle speed, then lightly releasing it showed that the throttle doesn’t always close fully. I’d add a second throttle return spring, except this throttle body, with its helical return spring, doesn’t lend itself easily to that mod. Since replacing the throttle cable is a real bear (everything has to come out, seat belts, seats, middle channel cover), I rather first try a second spring.

12 April 2019

As the new alternator bracket was being machined, it dawned on me that it’s been over 40 years since I last used a mill. To make it more entertaining was that as machining progressed, the part had fewer and fewer parallel faces on it to clamp on to. Thankfully, there were only a couple critical dimensions  so I managed to not wreck it. The odd contours are dictated by what the bracket has to avoid on both the block and alternator. As you can see by the surface finish, a roughing cutter was used and I didn’t see any point in cleaning it up. The most egregious bits are the radiuses around the alternator mounting holes, which were done free hand – no CNC here, yet.

With that off the list, the next item is a new engine cover. As mentioned previously, it’s not just for looks. Wind comes up over the windscreen and pushes air immediately above the passenger compartment aft. That air has to be replaced, which comes from the area over the engine bay, and therein lies the potential problem. Say half way up a hill climb course, a fuel leak develops and lights off. Airflow will push the flames forward into the passenger compartment, which is too ugly to think about, so the engine bay needs to be covered. The new one may or may not use parts of the old, particularly the louver subassembly. The one nagging part is paint, which wouldn’t be an issue had non-metallic paint been used. I haven’t decided what to do; I’m concerned that if I attempt it, it won’t match at all. I’m almost tempted to go the other way, painting it flat black, but it obviously won’t match doing that either!

5 April 2019

The thumbnail picture issue is still unresolved. It appears that Internet Explorer 11 doesn’t properly display thumbnail pictures here, but strangely, only pictures created after mid-February 2019 are affected, which makes no sense. More puzzling is that other browsers seem to have no problem with any of the pictures. I’ve tried everything I can think of to resolve it but have come up empty-handed. Since no one’s complaining, perhaps most people don’t use IE11, so I’m going to stop wasting time on it. Maybe IE or one of the apps has a problem that’ll eventually get fixed.

(After writing this, I went to check if these thumbnails appeared, and surprise, they all do, even the problem thumbnails from earlier. Sigh, apparently the solution is to just not worry about it, and it fixes itself!)

Okay, some actual Midlana content. As you may recall, there was some concern regarding how the alternator bracket seemed to flexing more than it should – there’s a reason for that. The fabricated alternator mounting bracket was caught cracking through, no doubt due to a combination of hardening after welding, and vibration. The question is, how to fix it?

The problem is that there is very little space to work in. I can’t just move the alternator away from the engine to free up space for a beefier bracket. The combination of belt routing, the proximity to the chassis, and where the available mounting holes really box in this one solution. While the cracks could be welded up, it’ll just happen again, so some thought has to go into this to do better for Version 2.0 (or whatever rev this is up to). One good thing is that with the mill on-hand, it opens up the option of fabricating a replacement from one chunk of steel (I don’t trust aluminum in this application due to its propensity for work-hardening). That avoids the issue with the heat-affected zones ending up hard and brittle.

Oh, and I signed up for the Virginia City Hillclimb. To be honest, I’m a little uncomfortable thinking about all that could go wrong – and the dire consequences. But then I remember that I’m the one steering, braking, and accelerating, so no one’s forcing me out of my comfort zone. It can simply be considered a car vacation, and a chance to get some great shots of Midlana on the shore of Lake Tahoe 🙂

In other news, I finally visited the Carlsbad Craftmanship Museum and got schooled on the use of a macro lens. For some reason I thought that my lens would be perfect for this, but it was just the opposite. Due to its zoom, I had to back up about 10 feet to get the subject entirely in the frame, then everything but one point was out of focus. The two pictures here are after I gave up and used my phone. Instead, just click on the above link and you can see better shots that anything I took. As an aside, this museum was founded by Joe Martin, past president of Sherline, maker of miniature lathes and mills. You really do need a macro lens though, to see the detail. The aircraft has every rivet and actuator in it. The crowning object in the museum is a 1/6 scale 1932 Duesenberg SJ that runs, on gas, and the transmission(!), steering, and suspension works, all made from scratch. It is truly a miniature car – which took 10’s of thousands of hours to complete. 

17 Mar 2019

Built wall shelves to the right of the mill. The idea is to get stuff up off the floor to free up what little space there is. Also, the shelves are placed such that I’ll have less of an ordeal swapping the 80-lb vise and dividing head. It’s also a place to spread out all the cutters and raw stock so I can find what I’m looking for, rather than having it all buried in a box somewhere. The lack of shelves at lower-left is to provide clearance for moving up to 4-ft tall sheet material to behind the free-standing shelf at far left. It’s about the only place to store to stuff, so it needs some way to be accessed. At far right, next to the door, is for standing tubing vertically. Before, it was leaned against the wall and either falling over or blocking the door. Midi appreciates the easy way in now.

Currently, there are a number of competing tasks; with us moving into Spring, the yard is pushing its way toward the top of the list. As far as Midlana-related tasks, first is to fix that pesky alternator bracket, like I keep saying I’ll do… I know, I know.

I don’t know what’s going on with the pictures. They used to work… they all work on earlier posts, but this month’s and last months fail to display a thumbnail, yet will show up if you click where they’re supposed to be. Another fussy thing to correct.

19 Feb 2019

Okay, a lot has happened in the last couple weeks, though there’s not a lot to materially show for it. Shown in the picture below is the sum of the work. Seen is a spindle light and speed sensor (made from a 100mm LED ring light intended for cars). Also seen is the black box below the DRO, which contains the controls for speed, direction, and jog. Both AC and DC braking are enabled, so when the mill is switched off, the spindle stops in about 1.5 seconds. That and other features were found after hours spent combing through the 440-page Hitachi variable frequency drive manual. It was worth it, as everything now runs the way I want. Oh, and of course, the mill had to have a Kurt vice. Anyway, with all this out of the way, it means…

The mill can now be used to actually do stuff. First on the list is something that’s been bugging me lately, the alternator mounting bracket in Midlana. It flexes, yet is made from 0.25″ steel. When belt tension is increased, the alternator nose moves in the direction of the tension, throwing off belt alignment. The concern is accelerated belt wear or having it break somewhere remote, especially since it’s a pain to replace. The existing bracket will either be modified or a new one made with thicker material.

Also near the bracket happens to be the idle control valve. The last few times the car was driven, after it’s fully warmed up, idle has a bad habit of hanging up around 1600 RPM for maybe 15 seconds. I don’t think it’s software, and Honda idle control valves are known to stick, so it’s got to be cleaned. It’s Like the alternator bracket, it’s hard enough to get at that I might try the easy way first and shoot some carburetor cleaner into the idle port rather than removing the intake manifold first. We’ll see.

3 Feb 2019

So the mill arrived, with some heart-stopping drama.

Things started out well enough, with the truck arriving on time. The first thing to note is that for some reason, someone decided to sit the enormous 1,676-pound crate (with its integral pallet) on top of a weak and partly collapsed second pallet. That made it tough for the driver to get the pallet jack under it. The there was that he parked the truck pointing uphill, so once on the pallet jack, the crate wanted very badly to roll toward the rear of the truck. I asked if he’d like to turn the truck around, but he said no problem. Okay…

The only thing stopping the entire affair from rolling out the back was him dropping the floor jack and letting the pallet skid to a stop, and we haven’t gotten to the fun part yet.

So as he’s nearing the lift gate, I said that the pallet looked longer than the lift gate. Again, “no problem”, but I wasn’t buying it. As he rolled the heavy pallet onto the lift gate, it sagged, further increasing the downward angle, making the whole thing try even harder to roll off the end. At this point, he had the controlling wheel of the pallet jack about 12″ from the rear of the lift gate, yet there was about 13″ of pallet still in the truck bed. I was sure that we were either stuck, or that it would end up in the street. So at this point, he (now having to stand to one side) had to raise the pallet jack just enough to let it roll a bit more, yet stop it before the pallet jack wheel rolling off the end of the lift gate. He did, stopping it—I kid you not—1/4″ short of disaster. Of course, that meant that there was still 1.25″ of pallet in the truck bed, which was a big problem. The truck facing uphill, the lift gate bending downward, and the pallet still not fully on the lift gate. At this point, he couldn’t let go of the pallet jack handle because it would have swung down, likely causing the entire thing to end up in the street. So then he asked me to lower the lift gate a little. I asked “are you sure?” “Sure.” Ugh, okay, so I lowered it about an inch, and as feared, the front edge caught, causing the entire crate to tip even further towards disaster. He said, “drop it another inch.” Sheeze, okay…. (in hindsight, who’s fault would it be if it fell off? Hmm.)

With a crack and a thump, the 1,676-pound load broke off the leading edge of the bottom weak pallet, and it was finally entirely on the lift gate, and safely lowered to street level—I could breath again. It really was that close to disaster.

Once at street level, there was then the task of pushing it up the driveway, and it took all of our combined strength to get it there, but finally it was in the garage. The pictures show the rest of the story, having to cut away the pallet in order to gain access with the engine hoist. What’s not shown is the 1-2 hours my brother and I spent trying to get the mill onto its stand, which involved using tubes for rollers and literally “greasing the skids.” Then there was removing the mystery preservative on the surfaces, installing the power drives, and, what will take a fair bit of time, wiring everything, including the variable frequency drive.

Oh, and a few may wonder why the stand is so tall. It’s because it puts the work at about the same level as the lathe, which seems right to me. Doing it over again, I might have made it perhaps an inch less (it’s a stretch to access the spindle nut, but since it’s being set up to use the ER32 collet system, that won’t happen often.

Lastly, I took a picture showing a big circular scratch on the mill bed. Don’t know what they did, but since it’s not running yet, it’s my evidence that I didn’t put that there!

More as matters proceed.

30 January 2019

This week had previously been planned as vacation, but coincidently, a minor operation got scheduled late last week. It’s just as well, because recovery has been rather unpleasant. Let’s just say that sitting requires much care, and does involve a donut cushion. I have no idea if it’ll end up back to normal, or if this is the new normal.

Anyway, never being one to sit around, (and the wife out of town), an epic garage cleanup happened in preparation for the arrival of the mill. First was finishing up the mill stand.

Next was an epic garage cleanup, and at the end of several days of non-stop purging, the side yard is a mess. With rain forecast for the rest of the week, not sure how much will get hauled off. From an anthropological standpoint, it was both interesting and disappointing to see what was dug up, things forgotten and buried for 10-20 years—there were even parts from Kimini. Some of the tubing and sheet scraps are so corroded that it, too, will likely end up at the scrap yard. I also have a (bad?) habit of keeping any tubing cutoffs longer than about 2-inches, so there were several very heavy containers of scraps of questionable worth. A line had to be drawn so much of it is going as well.

With the mill taking the place of the drill press, it was moved out from between the “welding table” (in quotes because I haven’t seen but a tiny corner of it in years; it’s a separate cleanup project) and the lathe. That left 15″ of valuable floor space where the lathe could be slide over and the grinding center rotated 90 degrees to free up walking space. The trick of course was actually moving the lathe. I have no idea what it weighs but no luck trying to slide it. I even backed up the truck to the garage and tied a strap to the lathe, with the thinking that I could pull it the necessary distance, but Little Voice in the Head kept saying “bad idea”, so I gave up (the concern being that it would have applied a sideways tipping force, which could have caused it to fall onto Midlana.

I then wondered if a crowbar could lift one end, and a metal rod placed under it to serve as a roller, and then push it. Yes indeed that worked great.

There was swarf, dirt, dust, and who knows what else everywhere, areas which hadn’t been cleaned in decades. (I have a wall-mounted garage vacuum with a HEPA filter; I’m glad it does because I know some of that dust picked up was from the TIG electrodes ground on the belt sander. Some of them contain 2% Thorium, which is radioactive… yeah.) Anyway, two trash bags were filled with just that, and it felt really good to get the entire mess finally cleaned up. I can work in messy conditions because I stay focused on the work-at-hand, but the mess is like a nagging… well never mind. It gets on my nerves after a while and at some point, it has to be dealt with.

Next, the large storage shelving unit was modified per the plan, shortening it 24″ to free up room for the mill (a non-negotiable step, proactively forcing the point that  enough stuff will be thrown to make up for it. So far so good.

In parallel with this, basic tooling for the mill was ordered: a Kurt (of course) vise, cutter bits, collets, and so on. That’s mostly to avoid the wife getting bombarded with many individual boxes arriving at the front door, which only generates troubling questions that I hate to burden her with.

After that, attention turned to the Hitachi WJ200 phase controller (for varying mill motor speed) and how to control it. An order to Digikey provided all the bits, and it was with some irony that I thought “a mill would be really handy to cut out and and drill all this.” This box contains a tachometer and even a cute little calculator to determine cutter speed. In addition there are direction controls, speed, jog, and emergency stop. Of course, it’s not complete without a self-peeling label; that’ll get dealt with at the same time the other controls are labeled.

Lastly, picked up some heavy wire and a fuse box and cut-off switch in anticipation of wiring the beast. We’ll see if the mill comes with a 115VAC outlet (it runs on 230VAC). It’ll be needed for the tach, DRO, and future lighting. Anyway, I don’t get too excited very often, but I feed like Ralphy in the movie Christmas Story when he realizes he’s getting the Red Rider BB gun. Expect more pictures soon since it’s scheduled to be here in about 30 minutes :).

19 Jan 2019

Something big and heavy is headed this way. Yeah, a mill is half way across the country, hopefully one that I won’t think about upgrading for a very long time.

Some background: I’ve gone back and forth on getting a mill for decades, weighing the small (which fit well into a crowded garage) and low-priced import bench mill/drills, against knee mills, and those against enormous, stout, and very used Bridgeport-sized machines. Long story short, I wanted the impossible: a small, high quality, inexpensive, and reliable machine—it doesn’t exist. Proponents of Big American Iron, who always seen to know of deals nowhere near me or deals I missed, insist that anything short of US-made machinery is junk. As is written in the book, if this machine was in a factory where time is money, I might agree with them, but that’s not me.

Buying an old, well-used large machine is not an guarantee of success, and I don’t know what I’m looking at. I get the point about them being more rigid, but that doesn’t guarantee accuracy or repeatability if the ways and/or bearings are shot. The big picture purchase price includes fixing the worn parts (who’s going to make the repairs and what does that cost?). Buying something used means looking at it in person, and most are far away. Then there’s tax and the expense of moving a 3000 lb machine to where I want. Since I don’t have the space for a full-size machine anyway, that doesn’t matter, narrowing the choices to smaller (non-domestic) units.

So many times I nearly bought a bench-top Chinese mill, figuring something was better than nothing, but I just couldn’t. There are so many negative posts about them that I figured there has to be something to that and they should be avoided.

There’s another aspect of this as well, at least as important as the machine itself. Due to the expense, this needs to be a one-time purchase.  I don’t want to risk spending $$$$ on a beat-up or low quality machine only to find out it’s terrible, then have to explain to the wife why I have to dump more money into it, or worse, get rid of it for half what I paid, and then spend double that to get a good one. I ended up compromising between American and Chinese and went Taiwanese. The mill is available in several versions: switchable belts, variable speed, and single or 3-phase. The variable speed version is mechanical, meaning that the speed is set by an adjustable-radius pulley. I’d have gone for that one but it’s $800 more and has a lot of moving parts. Because 3-phase is also available, however, a variable-frequency drive (VFD) can be added, resulting in a much wider speed range, more torque, and it’s also much cheaper, but does require substantial setup. The manual for the VFD alone is 98 pages of dense settings, so there’ll be time spent getting that going, and making a small box containing the controls (speed, fwd/reverse, start/stop, and bump).

The unit is basically a baby Bridgeport and weighs 1500 lbs. so I don’t want to move it any more than necessary. Also, being a baby Bridgeport means that at normal working height, the table is (said to be) fairly low for anyone taller than maybe 5′-8″. For those reasons, a wheeled stand will be made to adds roughly 7″ of height. While it’s tempting to go higher, the thought of having that much weight that high up makes me nervous. The large iron-wheel casters will give it mobility, and it’ll have three (yes, three) leveling pads. The thinking is that four pads won’t spread the weight evenly; there’s always going to be one that has more, less, or even no(!) weight on it, distorting the machine base to some degree. Yes, having three is less stable, but the idea is to crank the pads down so that they just remove weight off the castors. That way, if there’s ever any tendency to tip, the wheels are there to stop things. The plan is to use the engine hoist and lift it off its pallet, straight onto its stand, where it’ll live from then on.

Before it arrives, there’ll be a massive garage cleanup, pulling out everything and probably tossing out or giving away a bunch of stuff. The final layout will probably be slightly different than the drawings from the last blog entry. I’m also going to try something which may or may not go well, as the new layout requires a slightly smaller storage shelf. The one I have is huge, 8′ high, 8′ wide, and 2′ deep, and heavy duty. I just hate to throw it out and then spend more on a smaller unit that probably won’t be as good. The plan is to disassemble this one, cut the frame down 24″, and reassemble it. Either I’ll congratulate myself, or get pissed if it all goes wrong or takes too long. We’ll see.

Lastly, I ordered a manual mill because I can’t justify the expense of CNC. Plus, some of them don’t even have handles! About the only thing I think I’ll miss is the ability to mill curves or circles, but again, the number of times that’ll come up will be few, and virtually everything I make is a one-off, nothing requiring “production”. Because, if I just have to do something requiring a CNC, I know a buddy with a $25K machine 🙂