8 June 2018

The aluminum strakes were swapped in; notice how the aluminum end plates are now tucked under the body panel instead of on top. Because it’s cantilevered out behind rear axle centerline, it means that its vertical motion is mechanically amplified. I knew this and plan to trim back the strakes if necessary, and it didn’t take long to learn it might be. Backing out the car with the diffuser for the first time, when it rolled from our slopped driveway onto the level street, the rear suspension compressed just a little and I heard a brief scrap. I couldn’t help but laugh that the new diffuser had lasted all but 15 feet before being scarred. If this happens more frequently, it’ll be trimmed.

After finishing the diffuser, I happened to glance at the engine – never a good idea when in a good mood – and spotted that a stud holding the turbocharger had backed out. If that had been it, I wouldn’t be telling you, but it turned out that two were loose, with the second one being a pain because the turbocharger compressor has to be removed to get at it – you may remember the big Circlip pliers bought just for this. Sigh, when one thing gets fixed, it always seems like something else pops up.

New locking studs and nuts were installed and we’ll see how they last. Drilled-head bolts were not used for two reasons. One is the tight clearance, it wasn’t certain whether they could even be maneuvered into position to drop into the turbine housing mounting holes. The other reason is, being bolts, there’s a fair chance that the threads will get frozen in the stainless exhaust manifold, possibly breaking during removal. For now I want to stick to studs and see how they hold up. If they loosen again, safety wire will probably be involved one way or another. Stainless fasteners were not used because they thread into a stainless manifold. I learned the hard way – several times – that screwing together stainless parts is a recipe for disaster. Even spinning them together by hand often results in the metal galling and basically welding itself together. That said, there is a new stainless alloy that would be great in this application: Nitronic 60. The problem is that it’s so new, bolts made of it are really hard to find. Most vendors who handle it just advertise, “we can make whatever fasteners you want out of this material”; yes, I’m sure they can.

Let’s see, what else… wings. Based upon the references regarding diffuser design, placing the rear wing above the diffuser outlet makes a large improvement in downforce, so that’s the plan, but there are consequences though. Much like how the diffuser’s proximity to the ground is mechanically amplified by being behind axle centerline, so too is the downforce provided by the wing. Given how fast the car is, there is some concern that with a rear cantilevered wing, cresting a rise at high speed could allow enough air under an already-lighted front end to lift. For that reason, I think it’s wise to build both front and rear wings and install them at the same time. Hopefully the front wing will produce enough downforce to keep the nose planted.

In other news, one quirk of this WordPress blog template is how it arranges posts. First, they’re always in descending order, meaning that in order to read a multi-entry chronology, you have to read from the bottom up. That’s not a big deal, but it’s got another quirk of how past some number of posts, it places these additional entries on a second page. If you don’t notice the page selection buttons at the bottom of the blog and just start reading from there, you may miss entries hiding on the second page. I just changed the maximum number of displayed blog entries from “10” to “20”, so hopefully hidden entries are no longer an issue.