18 Jan 2008

Regarding the bike shock, the spring rate is around 500lbs/inch. The problem is that it’s preloaded, and the high-pressure nitrogen adds to the overall rate. This gives a discontinuity, where nothing happens for several hundred pounds until it finally starts to compress. Until I plot points at higher force I won’t know what I have. This weekend I’ll make brackets to properly support it and run a force vs. compression test on Monday. Oh, and another impressive feature of the shock is the mount bushings. I pulled a bushing out and there are needle roller bearings inside – very cool! My expensive Konis don’t have that!

While a great value, I can see a potential problem using these shocks, which is a shock travel versus spring rate issue. That is, I can trade one for the other, which is fine if one’s not important. Unfortunately there’s a squared term in the installation ratio which makes things more interesting. Instead of getting all wound up over this I’ll remain calm until I get it all into the suspension design software to figure it out. Worst case I have to use different units at the back, or swap springs, which isn’t so bad. That’s part of the beauty of buying off Ebay. If you buy used stuff and end up not needing it, you can sell it for virtually the same as what you paid.

Several Locost builders I know have used these shocks so I know they can work. Of course most are using sportbike engines so the very low weight translates to lots of suspension travel. I’m going with a heavier but more “polite” street engine which will eat into the little shock travel that’s there. Guess I’ll be the first to know if it works or not.

On the tire front, I’m going to try to decide tire diameters this weekend.

13 Jan 2008

Tires:

Tires are the most important – and most frustrating – decision during new car design. Nearly every suspension design parameter is related in some way to tire choice. I’m owing to stay away from hard-to-find 13″ street tires so it means going larger, to 15″ if not 16″ or even 17″. I’ve spent weeks going back and forth between brands, trying to settle on a size that everyone will be able to find, both now and over the life of the book. This very likely means going to 16″ or 17″ to guarantee some non-obsolescence. Yes, larger wheels and tires have a higher polar moment of inertia, weigh more, and cost more. On the other hand is the possibility of simply not being able to find what I specify, so the former outweighs the latter.

Before people jump up and down saying that it’s easy to find 13″ and 15″ tires, well yes, and no. Sure they’re out there, and they’ll continue to be for some years; the problem is the compounds. For as light a car as is being designed, high mileage tires are neither needed nor desired. This thing’s not going to driven in snow or rain (much) so all-weather tires aren’t wanted (besides, it’s a sports car). We need what tirerack.com calls “Ultra Performance Summer Tires”. This greatly cuts down the list of contenders, and even the list of high performance 15″ tires is getting thin, about how it was with 13″ tires when I designed Kimini. Note that this only applies to street tires, NOT race tires. For the track, getting 13″ and 15″ tires is easy, yet that’s not the starting point of this project – it’s going to be street-legal. 14″ tires aren’t mentioned because they never were a popular size and are fading fast, there’s no reason to even go there.

So in an effort to design in some staying power, the tires may be larger. For the moment, my sole concentration is on choosing tire diameter, a primary design concern. At this point, whether the tire’s made for 13″, or 15 – 17″ wheels is immaterial. However, when I read tire data and see that there’s a grand total of only one or two 15″ sizes, the writing’s on the wall.

12 Jan 2008

Spent a few hours carefully measuring a front suspension upright to load the dimensions into WinGeo3. It’s time consuming to find the center of rotation of balljoints. Yes, in the interest of reliability, availability, and cost, I’m specifying stock balljoints at the outboard ends. That makes it easy for the builder to get them from any parts store.

Shocks: Those who read the Kimini book recall my angst over shock selection and pricing. Good shocks are very expensive; I recently saw a new astronomical price for one> shock… $2000. I say unless it comes with topless maidens who install it, I have to wonder what the price gets you. Maybe it includes having an F1 champion fly in and drive your car. Anyhow, I’m wondering once again how I’m going to deal with the expense. The shocks, by necessity, must have adjustable ride height and adjustable valving, preferably being double-adjustable.

In the back of my mind has been to use sportbike motorcycle shocks. It’s nothing new; people have been using them in Locosts for a while now, though many builders are clueless about spring rate versus installation rate. They change the springs to make it all work, then wonder why they can’t set the shock valving the way they want. Anyhow, new bike shocks are also expensive, too, BUT, many bike owner remove them when they upgrade the suspension. That’s excellent news for us because they end up very cheap on Ebay. As a comparison, the Koni shocks on Kimini are about $500 each, plus a $50 spring. The price of a used sportbike shock and spring is $40-$50. Yes, about 10 times cheaper. This is a huge reason to consider them even if they aren’t perfect. Heck, the saved money can easily pay for the entire drivetrain! Bike shocks can> work in a car; the secret is to use them as-is, without changing spring rates. That’s because the shock valving is made to work with a specific spring rate; so as long as it remains unchanged, it doesn’t care what it’s installed in.

This brings us to the next topic, whether to mount the shocks in the traditional outboard position, with the outer end on the lower A-arm,
or to use pushrod suspension. The traditional position is simple, easy, light, and easy to adjust. Using pushrods means more joints, a
pushrod, rocker-arm, and potentially burying the shock inside the body where it’s hard to access. Pushrod suspension came from Formula One where they had to get the shock and spring out of the 200mph air blasting over them. It allows putting them just about anywhere, which is important due to underbody airflow management. We have no such problems! However, many people think pushrod suspension is cool (and it is) but is the added complexity worth it? No… and yes. Technically it’s not, and completely silly, adding unnecessary complexity and making adjustment a potential pain. BUT, what overrides these objections is the $1800 we save. It means we have to compromise our “technical reasoning” on a cost basis.

This reminds me of something Dave Norton (Shrike designer) said about push-rod and rocker-arm suspension, “Just because you CAN design something doesn’t mean you Should design it.” He was referring to the added complexity versus what it does for performance. I have to agree.

Because of the complexity I had no intention of using pushrod suspension until I found how inexpensive motorcycle shocks are. Due solely to pricing, it’s probably the way to go. It does mean adding two rod-ends and a rocker-arm bearing. The one problem with designing in specific motorcycle shocks (and writing a book that uses them) is that over time, that particular unit will become hard to find. To offset this, I’ll choose one from a popular (therefore, common) which will hold off the obsolescence for a long time. Lastly, the ride height adjustment on the shock is unusual, using a ramp-type ride height adjuster instead a threaded collar. This could present a problem, BUT, push-rod suspension lends itself well to adjusting ride height elsewhere, by changing the length of the push-rod. So consider the decision made – probably.