16 March 2018

I started typing up what’s “on the list” in the Midlana forum and it just kept growing, so I thought I’d post it here as well since it sees more visitors. In no particular order.

The transmission shop is repairing and inspecting the transmission in preparation for its sale – ad here http://www.midlana.com/forum/viewtopic.php?f=22&p=8941#p8941

During the test drive, logger data was used to recalibrate the ECU’s calculated “gear”. The transmission doesn’t produce gear position directly but the ECU has the variables to create one. It’s handy for various things, such as boost-by-gear. Speaking of that, boost in 5th and 6th was increased (back) to the maximum value – that’ll be fun. Assuming it’s clear this weekend I’ll do a longer drive to fully break in the gears, then change the transmission oil as requested by the gear manufacturer.

I reworked the rear engine mount (which resists torque) while the engine was out but don’t like the result, too much vibration. I have a plan to basically roll my own and I’ll post pictures. The sweet thing is that the new design will make it easy to change the stiffness on the fly.

There’s the wings to make, which is a significant project but since it’s fairly compartmentalized, the car can continue to be driven while that’s underway.

There’s the rear diffuser, and right after that, filling in the gap above it, created when the damaged panel was cut out after my off at Willow Springs. Will probably use screen mesh for that.

Engine cover: Been wanting to redo it for awhile because without it, the car looks unfinished. More concerning though is the small worry about an engine fire at-speed, there’s a strong likelihood that the flames will be swept forward by the swirling air. That would be bad.

Upgrading the alternator. If I’m driving at night in stop-and-go traffic, the lights, electric water pump, radiator fan, fuel pump, and of course the ECU are all on, which is around 80 amps. I’m considering adding a small oil pump and cooler to the transmission (already have both) which moves the total current closer to potentially 90 amps at idle. The OEM Chevy pickup alternator produces around 14V when I first start the car, which is fine, but as it warms up it drops off. On the freeway with just the essentials (water pump and fuel pump), battery voltage ends up around 13.5V, and around 13V at idle when fully warm, lower than I’d like. I’d like to be able to run everything instead of having to sometimes load-shed things as the battery voltage drops off.

There are a couple solutions, like feeding cooling air to the alternator and putting on a slightly smaller-diameter pulley, though it’s being spun about as fast as it should be (18,000 alternator rpm at 8000 engine rpm). I’m currently leaning instead toward a unit that can support everything even at idle, such as the PowerMaster 478618. Better yet, it has remote sense and adjustable  output voltage .

Long ago I bought LED signal flashers because the old-school mechanical ones don’t work with LEDs. Until recently, LED car lights weren’t a “thing”, so it’s random chance how the mechanical flasher sockets are wired (since polarity didn’t matter). Of course mine are backwards backwards (both the turn and emergency flasher) so  the new LED-compatible flashers don’t work. I’ll have to pull out the fuse block and swap the pins.

Other things on the back burner are adding a transparent bulkhead window behind the seat to see what that does for possibly reducing wind and noise. Then there’s door fabrication. Pretty sure how I want to do them; it just endless details like: material, frame substructure, hinge type, fabrication, and placement, weather stripping, and a latch.

Lastly, I finally had enough of the buggy GoPro and have ordered a Sony action cam.